
B R O W N I A N  D I F F U S I O N  IN N O N E Q U I L I B R I U M  GAS 
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The Brownian motion in a nonequilibrium gas is considered within the f ramework of the s to-  
chastic t r ans fe r  theory in l inear Boltzmann sys tems .  The equation for Brownian diffusion 
of par t ic les  is derived in inhomogeneous flows of ra ref ied  gas. 

Some general  approaches for investigating Brownian motion of par t ic les  in a nonequilibrium thermo-  
static regulator  were developed in [1-4]. When analyzing the motion of a m i r r o r - r e f l e c t i n g  sphere in gas 
Brownian diffusion was studied in [4] in an inhomogeneous flow of ra ref ied  gas which is based on a modi-  
fied Markov method, However, in the case of gas thermosta t ic  regulator  it would be more  to the point to 
investigate Brownian diffusion in the f ramework of kinetic theory.  Such analysis  was ca r r i ed  out in [5] 
for the gas equilibrium case.  

In the present  ar t ic le  Brownian motion of par t ic les  in a nonequilibrium gaseous medium is again 
considered on the bas is  of kinetic theory.  The resul ts  of the analysis  a re  identical in corresponding si tu- 
ations with the resul ts  given in [4]; consequently, they provide a kinetic basis  for the method as given in 
[4]. The obtained express ions  for  the tensor  of diffusion and of dynamic fr ict ion enable one to write down 
the Langevin equations for Brownian motion in an inhomogeneous anisotropic medium; by employing these 
express ions  the equation of Brownian diffusion can be obtained which takes into account the effect of the 
inertia of a par t ic le  on its motion in the coordinate space.  To give an example the s t r e s s -bea r ing  effect 
is studied on the s tat ionary par t ic le  distribution in Poiseuille flow and in the gravitat ional  field. It resul ts  
in an inhomogeneous par t ic le  distr ibution of a flow section and an additional pulling down in the direction 
of the gravitat ional  forces .  

1. The motion is considered of a sys tem of par t ic les  of mass  m and mean density n in an inhomog- 
eneous gaseous medium with density n o and molecule mass  m 0. Under the assumption that n o >> n, the 
interaction between the par t ic les  can be ignored if one compares  it with their  interaction with gas mole-  
cules.  It is also assumed by us that the distribution function of the molecules  is independent of the state 
of par t ic le  m since the change in f due to interaction between the molecules  of the medium and the p a r -  
t icles is proport ional  to n. These approximations (in the case of interaction between the par t ic les  and gas 
molecules  due to collision) are  equivalent to an assumption that the evolution of the distribution function 
F of par t ic les  m has a Markovian cha rac te r  and enables one to analyze this evolution using stochastic 
theory of t ranspor t  phenomena in l inear ]3oltzmann sys tems  of Tolubinskii [6] in which the part icle  velocity 
is approximated by a Markov jump-like p rocess .  

In descr ibing the interaction between the par t ic les  m and the gas molecules  we shall only consider  
the potential of rigid spheres .  The same charac te r i s t i c s  of a Markov jump-like p rocess ,  namely the col-  
l ision frequency v and the probabili ty density of t ransfer  in a unit of time W are  given in this case by 

,, (t, r2 == .[ s  (t, r2 . ( l)  

= ~ " ~ "  -~" f ( t ,  r ,  Vo).  (2) W ( t ,  r, v lv ' )  a dv o dvoS( --vs) 8 g"- g'~ -*" 

The above ref lec ts  the laws of conservat ion of energy and of momentum in collisions and the following 
notation i sused :  ~s = (m~+ m0~) / (m + m0), g = v - v  0 = eg. The equation for  F is given by [6] 
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OFot -'-v.. O..For + ~" ovOF-* = ~ dv W (v t-~ ' "r, +v') - -  vF (3) 

which can be r ega rded  as  genera l ized  F o k k e r - P l a n c k  equations for  the case  of pa r t i c le  motion in non- 
equi l ibr ium gaseous  medium for  any value of the ra t io  e = m0/m.  

2. Brownian motion occu r s  if  e << 1. It is...considered by_us on  the b a s i s  of (3). Since the change of 
the par t i c le  veloci ty when colliding is  given by Av = [e/(1 + e)](g + e 'g)  = - e A r  0, the re fo re  by set t ing Av 0 
~ 1, one obtains Av ~ e. The in tegra l  of F o k k e r - P l a n c k  col l is ions follows f r o m  the Bol tzmann coll is ion 
in tegra l  in (3) if F(t ,  ~, ~ )  is  expanded into a s e r i e s  of A~and  the f i r s t  two nonvanishing t e r m s  a re  r e -  
tained: 

) e F = s  _. :D v(t,7, v) F (47 ,  v), (4) 
av av 2 + 

and hence by using (2) 

J'd o ! + 1 +  'es 7, v~ (8) 

F r o m  the phys i c i s t ' s  point of view it is  in te res t ing  to study the approximat ion  of the s tate  of a 
Brownian pa r t i c l e  in equi l ibr ium to the s tate  of the surrounding gaseous  medium when I s--~ = I v - u ( ~ [  
~ [ekT(~]t/~(the par t i c le  energy in the ex te rna l  f ield E is a s sumed  to be smal l  compared  with the ave rage  
t he rma l  energy) .  By a s suming  that in this s tage one has lcl = Iv0-u(r)l ~ 1, one obtains that [sl ~ e 1/2. 
There fo re ,  if  the coeff icients  of A a n d D v  in (4) a r e  calculated with an accuracy  up to the t e r m s  of the 
o rde r  e3/2 or  e ~, r e spec t ive ly ,  then (4) takes into ace.ount the t e r m s  of the o rde r  of e in the c o r r e c t  expan-  
sion of the Bol tzmann col l is ion in tegra l  in the unique s e r i e s  in powers  of e. 

3. The calculat ion of the pulling down and diffusion coeff icients  in (4) is  eas i ly  c a r r i e d  out in the 
va r i ab l e s  ~ 'and s-:. F o r  a nonequil ibrium distr ibut ion function of gas molecules  i ts  t h i r t e en -momen t s  ap -  
p rox imat ion  [7] is  adopted 

2pV• q pVg 1 . (7) 

In the above f0 denotes  the equi l ibr ium distr ibut ion 

fo (t, r ,  v) n o (2~V~))-s/~ exp [ -  (~o -* ~ = -u)2/2V~], (8) 

the dot denoting he re  the s c a l a r  product ,  the colon the convolution opera t ion of t ensors ,  and the product  of 
vec to r s  cc being the inner  product .  

In accordance  with (8) A a n d D  v a r e  r ep re sen ted  by 

, ~ : ' 4 o : A ~ T A r , ' -  ' -* D ~ = D o + D c + D r ,  (9) 

where  ~0, Do a r e  t r a n s f e r  coeff icients  in a l o c a l l y  equi l ibr ium medium;  A'- c, D e take into account.+ the effects  
of tangential  s t r e s s e s  in a gas  flow; and A T, D T the t h e r m o - b e a r i n g  effect.  When evaluating A a n d D v  by 
using the fo rmulas  (5) and (6), i t  i s  n e c e s s a r y  to expand in powers  of e all  the quanti t ies appear ing  there ,  
and one ignores  the t e r m s  of o rde r s  higher than e3/2 and e 2, r e spec t ive ly .  The calculat ions a r e  quite 
s t ra ight forward ,  though c u m b e r s o m e .  They a re  omit ted he re ,  only the final r e su l t s  being given: 

J L Vo c 
(10) 

= - -  ee '  d~[o (c) d~'c [~c+ ee'e ']  = 7Vo~e,/= Dj .  Do 2 ~" 

In the above the coefficient  of dynamic fr ic t ion in the local ly equi l ibr ium gas was introduced 

"f = ~ a~sVono (111 

and the diffusion coefficient  D v = TeV~ in the veloci ty space .  The exp res s ions  (10)-(11) a r e  ident ical  to 
the f ami l i a r  r e su l t s  of the theory of Brownian motion in a homogeneous gas [5]. However ,  s ince in our 
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case  n o and T depend on r_ the re fo re  ~/ = T('~ and D v = Dv(r-~, 

= 2pV~ ~Vo "~ ~ : e'e" - -  2e~:  se' = ~ --~? +p , 
(12) 

Dc ae ~_cCSfo (c) de'e'e"c : e'e' = - -  - -  D v ---~-~ . 
2pVg ,~ -~ 5 p 

These  exp res s ions  desc r ibe  the so -ca l l ed  s t r e s s - b e a r i n g  effect  for  Brownian motion of pa r t i c l e s  in an 
inhomogeneous gas  flow which a p p e a r s  in the addit ional dr i f t  of a pa r t i c le  in the di rect ion T �9 s, as  well as  
in the an iso t rop ic  addition (12) to the diffusion coe f f i c i en tD  0. 

Final ly ,  the hea t -bea r ing  effect  is  taken into account  by the expres s ions  

~4r= ~ "dc[,(c) de'c 3 e ' . ~ e ' . e ' - - e ' e ' . q l = - - 1  
pV~) 5Vo J p 

Dr = O. 

4. Thus,  the F o k k e r - P l a n c k  equation for  the dis t r ibut ion function of Brownian pa r t i c l e s  in an in-  
homogeneous gas  with (3), (4), (10)-(13) taken into a c c o u n t i s  given by 

OF q_-~, OF OF 0 [ ] 
Ot Or @ ~" 0~ ~ _,.F.vF @ D o ..... 0 , F . .  (14) 

Ov 

In the above 

(13)  

-~ [ [ /  1 Do _~ (15) .. = 2 + u . r + •  -~ r = v  , : �9 
-* 5 p '  5 5 p 

In con t ras t  to Brownian motion in a local  equi l ibr ium medium,  the t ensor  of dynamic fr ic t ion F and the 
diffusion coe f f i c i en tDv  depend on the s t r e s s  t ensor  in the gas .  It is not difficult to find that the Langevin 
s tochas t ic  equation can in this case  be given in the f o r m  

dr (t) -v(t), (16) 
dt 

do (t) 7f IT(t)] - -  r" [7(t)] .~ (t) + B [7(0!. ? (t), (17) 
dt -* 

where  B . B  = Dv,  F-~(t) is  the Gauss ian  random p r o c e s s  with (r-~t) } = 0 and (~(t)F'( t ' )} = 215 ( t - t ' ) .  

The dependence of the coeff ic ients  in (17) o n ' ~ m a k e s  the solving of (16) and (17) much more  difficult 
in the genera l  case .  The random p r o c e s s  (r(t), v(t)) appea r s  as  a two-component  Markov diffusion p r o -  
ces s .  However ,  bea r ing  in mind that during the re laxat ion  t ime of the veloci ty  of Brownian par t i c les  to 
local equi l ibr ium s ta te  in accordance  with the s tate  of the ex te rna l  medium,  the dis tr ibut ion in the coord i -  
nate space  changes only slightly,  one can cons ider  Eq. (17) independently of (16) taking into account  that the 
dependence of the coeff ic ients  on- r ' in  (17) is only p a r a m e t r i c .  This  co r r e sponds  to a change in-K[r-~t)], 
~ ( t ) ] ,  and B~(t ) ]  being ignored during t imes  of the o rde r  of durat ion of re laxat ion of pa r t i c le  veloci ty.  
The solution of Eq. (17) can then be r ep re sen t ed  by 

f 

; (o  = ~ (o-~ ( o ) - y ~ .  ~I + -,r-~'~ + _,~ (o'.I ~-~ (~). ~. ~(o ~, (i8) 
0 

where  ~2(t) = exp ( - I t ) ,  and the par t i c le  veloci ty  is  approx imated  by a Gauss ian  p r o c e s s . .  It follows f r o m  
(18) that 

(~(t) ~ = ~ (t). [ < v (0) > - r-1. ~1 + r -~ .~ ,  

< g(o  - ~(o)j, > = r- , .Do + ~ (0. r < ~'(o)-~ (o) > - - r - , .~o) .~  iO : 2  -i (0. 

There fo re ,  the probabi l i ty  densi ty of the t ransfer-~( t )  is  given by 

F (t, ~'t v') = (2~) 3 exp - - 2  [ v -  (v ( t ) )  l-d(O. [ v -  (-~ (0)  ] �9 (19) 
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F o r  t --* co one has (v(t) } - -  I'_. -1 �9 K_ d(t) --* F . D v  1 and (19) yields the Maxwell velocity distr ibution of 
Brownian par t i c les  in an inhomogeneous medium 

[det~F'~D~'vt ] ' [ __l 2 ] 
F o (v) = (2~) 3 -5"exp - -  (v'--_+V-'. K)._~F-D~-'-_~ (~ - -  F- ' . .K)  . (20) 

Since T r ~  = 0 i t  follows f rom (18) that the cor re la t ion  t ime T v = [(v(0)~(0))]-l:  i (v(t)~(0))dr = T r  F_.. -1 
0 

= 7 -t is identical  with the duration of cor re la t ion  for  a par t ic le  velocity in a local equil ibrium medium. 

5. The distr ibution function for  pa r t i c les  in the coordinate space is now introduced by 

P (t, ~ : S"~F (t, 7, ~) (21) 

The asymptot ic  behavior  of P(t, r) for  t >> Vv (for approximations which are  re la ted  by the express ion  (18) 
to the approximation of velocity) can be analyzed using (14) with the aid of the Chapman-Enskog method or  
the K r a m e r s  method. However,  by using the stochast ic  i n ~ rp re t a t i o n  of par t ic le  motion (with the same 
approximations) one is able to analyze the behavior  of P(t,  r) for  t ~ T v, as  well, that is,  as taking into 
account the effect  of inert ia  of Brownian par t i c les  in their  motion in the coordinate space.  

F o r  s implici ty,  the case is cons idered  in which-~(0) is given by the distr ibution (20). In this case 
by regarding-~(t) as a Gaussian random p roces s  which pa ramet r i ca l ly  depends on-~, one introduces the 
function/z(t,  ~) = P0(-~-~'*(t)), ~*(t) which is a solution of (1.6) and (18), P0(~) = P(0, -~). Then P(t, -~) 
= (~(t, "~')). It follows f rom (16) that ~(t,-~) is a solution of the equation 

OF- : (L o -+- L,) i~. (22) 
Ot 

In the above 

Lo = - v . r - ' . ~ ,  q = - v . ~ ( t ,  7), 
t 

w(t, r ) =  ~2 (t). ~ (0) - -  F-J,. K]  + ~( t ) .  t ~ - '  (s).B.-F(s)ds. 
0 

Averaging the formal  solution of (22) one obtains 
t 

P(t, r) = ( T exp [,f dt' (L, + La)] } Po(r~ 
0 

o r  

where 

(23) 

{24) 

t 

P(t 5 = u(t) <exp[S > P.(;) 
0 

t 

U (t) = exp[.tdt'Lo(t')]; L]( t )  = U-'(t)  L,(I) U(t). (26) 
0 

EmpIoying the definition of semiinvar iants  of cor re la t ion  functions of a random p roces s  [8] one can r e p r e -  
sent (25) as  

t 

P(t, r ) = U  (t)exp [.[ dt'G(t')]Po~), (27) 
0 

where 

(28) 

The diffusion equation is ob- 

(29) 

t 

=  oxp[ 
0 

. ( L ~ ( t t }  . .  "L~(tn})C being semiinvar iants  of the cor re la t ion  functions L~(t}. 
tained by differentiat ing (27) with r e spec t  to t ime: 

OR (t, -5 _ [L.  + U (0 a (t) U-1 (0] P (t, ~. 
at 

The adoption of the assumption on the coefficients  in (17) resu l t s  in considerable simplification of 
calculations of the explici t  fo rm of the opera tor  G(t}. This assumption is essent ia l ly  equivalent to the 
opera to rs  U(t} and L 1(t} being commutat ive in the express ions  for  the cor re la t ion  functions L~(t} in (28}. 
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Since ~(t ,  ~) is  a Gauss ian  p r o c e s s ,  only the f i r s t  t e r m  does not vanish of the expansion of the exponential  
ope ra to r  in (28). Having computed the co r r e l a t i on  function ~(t ,  r-'} and in tegra ted  with r e s p e c t  to t ime,  the 
following express ion  is  found: 

U( t )a ( t )U-r ( t )  ~ V '~  (l)] "F-~" v'Dp, (t)'V, (30) 

where  

D~ (t) -= D~ [I - -  9. (i)], DR = F-'.D~. (31) 

The f i r s t  t e r m  in (30) r e p r e s e n t s  additional contr ibution to the pulling-down de te rmined  by the inhomogen-  
city p r o p e r t i e s  of the surrounding medium,  the second t e r m  descr ib ing  the diffusion of Brownian pa r t i c l e s  
in the coordinate  space .  Using (30) and (23) one can r e p r e s e n t  Eq. (29) as  

ot I �9 T IS ( ~ ) l r - l ( v r D ~ )  P(~' 7) = v . D .  (t) .vPq, 7~. 

Unlike the asympto t ic  equation of K r a m e r s - S m o l u c h o w s l d ,  Eq. (32) de sc r ibe s  the diffusion p r o c e s s  
a lso  for  t ~ r v. In pa r t i cu l a r ,  the quantity which desc r ibes  the propagat ion ra te  of per tu rba t ions ,  (d/dt) 

�9 ~/Tr {[F_t + ~ ( t ) - I ] - F  -1 "Dv}, obtained f r o m  (32) r ema ins  finite for  t -~ 0, s ince it is equal to the ave rage  
veloci ty of t h e r m a l  motion of the pa r t i c l e s .  F o r  t < rv  in (32) the iner t ia l  ef fects  of the pa r t i c l e  motion 
a r e  essent ia l ;  they a r e  de te rmined  by the t ime dependence of the coeff ie ientDR(t)  and a r e  re la ted  to the 
effect  of veloci ty f luctuations of a Brownian par t i c le  on i ts  motion in the coordinate  space .  F o r  t >> ~'v 
these  ef fec ts  become  inessent ia l ,  and by ignoring the exponential ly damped t e r m s  in the express ions  for  
the coeff icients  in (32) one obtains an asympto t i c  equation for  Brownian diffusion in an inhomogeneous gas 

0P (t, 7-) + v . ~ P  (t, 7) = v . P ~ .  vP  (t, ~-), (33) 
Ot 

where  

The exp res s ions  for  V a n d D  R a r e  now analyzed in the i r  l inear  approximat ion  in the t h e r m o -  and 
s t r e s s - b e a r i n g  effects .  Expanding (31) and (34) into power  s e r i e s  i n ~ / p  and re ta ining only the l inear  
t e r m s  one obtains 

= - , = -~ + + v . D , , + ~ ,  (35) 
5 p 5 p 

which a r e  ident ical  with the r e su l t s  in [4] where  D R = T-2D v is the Einstein diffusion coefficient.  

6. To i l lus t ra te  the obtained r e su l t s  a s imple  example  is cons idered  of Brownian diffusion of p a r -  
t ic les  in a gas Poiseui l le  flow; the effect  is studied of tangential  s t r e s s e s  between pa ra l l e l  p la tes  y = •  
on the s ta t ionary  dis t r ibut ion of p a r t i c l e s .  We only re ta in  the l inear  in r expres s ions  (35). By adopting 
the 0X axis  in the ~ d i r e c t i o n  one has  u x = (3/2)Ux(1-4y2/h2), Uy = u z = 0, r x y  = ry  x = -3P~x4y/h  2, Txx 
= r y y = r z z  = r x z = r y  z = 0 .  L e t E  x = - E = c o a s t ,  Ey = E  z = 0 .  Then it  follows f rom (35) that 

3 DR 4 - 
D ~  = D R y  u = DR, D R x y  = DRu.~ = [auxg, 

5 p h 2 

__ ( g 2 )  3 DR 4 tux ' (36) 3 u~ 1 - - 4  . h ~ . Vx = - -  ~'-XE-- 2 -h T 5 p 

3 y-aE 4 ~Zu~y. 
Vy 5 p h 2 

The s ta t ionary  diffusion equation then b e c o m e s  

d byP (g) = n ~  d2p (Y-------~) (37) 
dy. . dy 2 ' 

where b = (3/5)T-IE(4/h2)(/ZUx/PDR). The solution of (37) for  the condition dP/dyl+h/2  = 0 can be r e p r e -  
sented as 

P (g) = n 2• 0 -1 (%, 0) exp [• • (38) 
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In the above 

h -- 2 - ~  {~' 
• = g U b ~ ' ,  • = ~-~ V b/2; v (• 0) = _ e ] dtet ' ;  

V 7~ 
o 

is the mean  par t i c le  densi ty in the pas sage  sect ion.  If in (38) the effect  is  ignored of tangential  s t r e s s e s  
in flow on the par t i c le  dis t r ibut ion (b ~ 0) then the obvious r e su l t  P = E is obtained. Thus,  the s t r e s s -  
bea r ing  effect  on Brownian diffusion r e su l t s  in an inhomogeneous distr ibution of pa r t i c l e s  in the passage  
sect ion with a higher concentra t ion n e a r e r  the wal ls .  It is  noted that in the case  of the d i rec t ions  of the 
externa l  force  and of gas veloci ty being the same (Ib < 01), (38) de sc r ibe s  an inhomogeneous distr ibution 
with lowered par t ic le  concentra t ion near  the wal ls .  Since (8) is  valid if  ]maxT/pl  < 1 and ~2 ~ E h m / k T  
�9 [maxT/p l ,  the re fo re  the inequality ~2 < 1 depends on Ehm/(kT)  and it is v i r tual ly  a lways valid.  T h e r e -  
fore ,  the inhomogeneity of the s ta t ionary  par t i c le  dis t r ibut ion in the gas flow is smal l .  F o r  b < 1 the ex-  
p r e s s ion  (38) can be simplif ied:  

b 1 h ~ 

A m o r e  essen t i a l  effect  of s t r e s s - b e a r i n g  is on the in tegra l  flow ix~ The la t t e r  is  de te rmined  by the 
inhomogeneous dis tr ibut ion (39) on the one hand, and on the other  hand by  the supplementary  drif t  in the 
opposite di rect ion to the gas flow which is  desc r ibed  by the las t  t e r m  of Vx in (36). By using (36) and (39) 
one obtains . . . . .  

h/2 

Jx = d g P V ~  = n h  Ux - -  Y E - -  --~ u x 4 p h  ~ " 

--hi2 

In (40) the s t r e s s - b e a r i n g  effect  d e t e r m i n e s  a nonlinear  dependence of Jx on the ave rage  gas veloci ty fix. 
It  is noted that the validity of (40) is bounded by  the values of fix which can  be found f rom the conditions 
b < l ,  ImaxT/pl  < 1 .  

N O T A T I O N  

~ a n d - q  0 a r e  the par t i c le  and gas molecule  velocity;  
a i s  the diss ipat ion c r o s s  sect ion;  

is the a v e r a g e  gas flow ra te ;  
T is the gas  t e m p e r a t u r e ;  

i s  the s t r e s s  t ensor ;  
~" is  the heat  flux; 
V 2 = kW/m0; 
I is  the identity t e n s o r ;  
T v i s the co r re l a t ion  t ime of pa r t i c le  velocity;: 

i s  the v iscos i ty ;  
p is  the hydros ta t ic  p r e s s u r e .  
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